大学物理波函数求解,怎么判断初相位正负
(1)波动方程;
这两道题,波都是沿着x轴正向传播,为什么6.11题初相位为负而6.12题为正呢?
波的初相位正负怎么判断呢?
6.11题 空白的是 t=0 和t=0.5 分别是(a)和(b)曲线 展开
根据t=t1时,x=0处y=0确定φ=±π/2
在根据t=t1时,x=0处,y对时间求导(振动速度)=-A*2πu/λsin(φ)>0,确定φ=-π/2
简便的判别方法有两种:一个根据振动方向向上判断。另一个就是根据波的图像,沿着波的传播方向,看波需要向前(或向后)平移多少相位才能变为余弦波,那初相位就是需要减(或加)多少相位。本题需要波形沿波的方向向左平移π/2,所以需要减去π/2
量子力学假设:
体系的任何一个可观测力学量A都可与一个线性算符对应,算符按以下规律构成:
(1)坐标q和时间t对应的算符为用q和t来相乘。
(2)与q相关联的动量p的算符{p}=-i(h/(2π))(d/dq)(注:d指偏微分,以后不特别说明都指偏微分)
(3)对任一力学量{A}先用经典方法写成q,p,t的函数A=A(q,p,t)则对应的算符为:{A}=A(q,-i(h/(2π))(d/dq),t)
则:能量算符为:{H}=-h^2/(8π^2m)△+V(其中△为拉普拉斯算符)
△=d^2/dx^2+d^2/dy^2+d^2/dz^2(直角坐标)
△=(1/r^2)d(r^2d/dr)/dr+(1/(r^2sinθ))d(sinθd/dθ)/dθ+(1/(r^2sin^2θ))d^2/dφ^2(球坐标)
2024-08-02 广告
波函数Ψ(r,t)的正负号表示所求点偏离平衡位置的方向。
正号是与指定方向相同、负号与指定方向相反。
对于,波形图和振动图,判断质点的运动方向方法不一样。得看波形下一时刻的变化,波形一小段时间后,由a变到了b,所以原点的质点。
是朝着虚线,也就是向下(y负方向)运动,初相位就是pi/2
11这种振动图,曲线本身就代表了质点随时间的变化,所以只要看横坐标下一时刻,质点位置就行了,看质点向y正方向运动,初相位就是-pi/2。
扩展资料:
物理波函数数学表达:
[1]量子力学假设一:对于一个微观体系,他的任何一个状态都可以用一个坐标和时间的连续、单值、平方可积的函数Ψ来描述。Ψ是体系的状态函数,它是所有粒子的坐标函数,也是时间函数。
(Ψ)Ψdτ为时刻t及在体积元dτ内出现的概率。Ψ是归一化的:∫(Ψ)Ψdτ=1式中是对坐标的全部变化区域积分。(注:(Ψ)指Ψ的共厄复数)。
[2]量子力学假设二:体系的任何一个可观测力学量A都可与一个线性算符对应,算符按以下规律构成:
(1)坐标q和时间t对应的算符为用q和t来相乘。
(2)与q相关联的动量p的算符{p}=-i(h/(2π))(d/dq)(注:d指偏微分,以后不特别说明都指偏微分)。
(3)对任一力学量{A}先用经典方法写成q,p,t的函数A=A(q,p,t)则对应的算符为:{A}=A(q,-i(h/(2π))(d/dq),t)。
则:能量算符为:{H}=-h^2/(8π^2m)△+V(其中△为拉普拉斯算符)。
△=d^2/dx^2+d^2/dy^2+d^2/dz^2(直角坐标)。
△=(1/r^2)d(r^2d/dr)/dr+(1/(r^2sinθ))d(sinθd/dθ)/dθ+(1/(r^2sin^2θ))d^2/dφ^2(球坐标)。
角动量算符:
{L[x]}=-i(h/(2π))(yd/dz-zd/dy)。
{L[y]}=-i(h/(2π))(zd/dx-xd/dz)。
{L[z]}=-i(h/(2π))(xd/dy-yd/dx)。
L^2={L[x]}^2+{L[y]}^2+{L[z]}^2。
[4]量子力学假设四:若ψ[1],ψ[2]…ψ[n]为某一微观体系的可能状态,则他们的线性组合∑Cψ也是该体系的可能状态,称ψ的这一性质为叠加原理。
(1)有本征值力学量的平均值:设ψ对应本征值为a,体系处于状态ψ,若ψ已归一化则:a(平均值)=∫(ψ){A}ψdτ=∑|C|^2a
(2)无本征值力学量的平均值:F(平均值)=∫(ψ){F}ψdτ、则定态中所有的力学量平均值都不随时间变化。
12这张图横坐标是x,给出的是某一时刻的波形,相当于在某个时刻给波拍了一张照片。
11这张图,横坐标是时间,给出的是原点处质点随时间的振动。
对于,波形图和振动图,判断质点的运动方向方法不一样。
12这种波形图,得看波形下一时刻的变化,比如图中,波形一小段时间后,由a变到了b,所以原点的质点,是朝着虚线,也就是向下(y负方向)运动,初相位就是pi/2
11这种振动图,曲线本身就代表了质点随时间的变化,所以只要看横坐标下一时刻,质点位置就行了,从图中看质点向y正方向运动,初相位就是-pi/2
正号是与指定方向相同
负号与指定方向相反