二项分布,泊松分布,正太分布中哪些是离散型随机变量,哪些是连续型随机变量
离散型随机变量:二项分布与泊松分布。
连续型随机变量:正态分布。
1、离散变量是指其数值只能用自然数或整数单位计算的,则为离散变量。例如,企业个数、职工人数、设备台数等。只能按计量单位数计数,这种变量的数值一般用计数方法取得。
2、连续随机变量,在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如, 生产零件 的 规格尺寸 , 人体测量 的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。
扩展资料:
区别离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等。
连续型随机变量的实现值是属于不可数集合的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等。
参考资料:百度百科-离散型随机变量
参考资料:百度百科-连续型随机变量
离散型随机变量:二项分布与泊松分布。
1、离散变量是指其数值只能用自然数或整数单位计算的,则为离散变量。例如,企业个数、职工人数、设备台数等。只能按计量单位数计数,这种变量的数值一般用计数方法取得。
2、连续随机变量,在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如, 生产零件 的 规格尺寸 , 人体测量 的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。
图形特点
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且:
当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。