若f(x)=∫(0,x)(1-t+t^2)/(1+t+t^2)dt,则f`(1)=?
2个回答
展开全部
f(x)=∫[0,x](t-3)²(t-1)dt
=∫[0,x](t-3)²(t-3+2)dt
=∫[0,x](t-3)²(t-3)dt +2∫[0,x](t-3)²dt
=1/2∫[0,x] (t-3)²d[(t-3)²]+2∫[0,x](t-3)²d(t-3)
=1/4(t-3)^4|[0,x]+2/3(t-3)^3|[0,x]
=1/4*(x-3)^4-81/4+2/3(x-3)^3+2*27/3
=1/4*(x-3)^4+2/3(x-3)^3-9/4
=∫[0,x](t-3)²(t-3+2)dt
=∫[0,x](t-3)²(t-3)dt +2∫[0,x](t-3)²dt
=1/2∫[0,x] (t-3)²d[(t-3)²]+2∫[0,x](t-3)²d(t-3)
=1/4(t-3)^4|[0,x]+2/3(t-3)^3|[0,x]
=1/4*(x-3)^4-81/4+2/3(x-3)^3+2*27/3
=1/4*(x-3)^4+2/3(x-3)^3-9/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询