2个回答
展开全部
2.解2:√(4|x|-x^2)是偶函数,x√(4|x|-x^2)是奇函数,其积分为0,所以
原式=2∫<0,2>√(4x-x^2)dx
=2∫<0,2>√[4-(x-2)^2]dx
=2∫<0,π/2>(2cosu)^2du(x=-2+2sinu)
=4∫<0,π/2>(1+cos2u)du
=4[u+(1/2)sin2u]|<0,π/2>
=2π。
解1:原式=∫<-2,0>(x+1)√(-4x-x^2)dx
+∫<0,2>(x+1)√(4x-x^2)dx
=∫<-2,0>(x+1)√[4-(x+2)^2]dx
+∫<0,2>(x+1)√[4-(x-2)^2]dx
=∫<0,π/2>(-1+2sinu)*(2cosu)^2du(x=-2+2sinu)
+∫<-π/2,0>(3+2sinv)(2cosv)^2dv(x=2+2sinv)
=2∫<0,π/2>(-1+sinu-cos2u+sin3u)du
+2∫<-π/2,0>(3+sinv+3cos2v+sin3v)dv
=2[-u-cosu-(1/2)sin2u-(1/3)cos3u]|<0,π/2>
+2[3v-cosv+(3/2)sin2v-(1/3)cos3v]|<-π/2,0>
=2[-π/2+1+1/3]+2[3π/2-1-1/3]
=2π。
原式=2∫<0,2>√(4x-x^2)dx
=2∫<0,2>√[4-(x-2)^2]dx
=2∫<0,π/2>(2cosu)^2du(x=-2+2sinu)
=4∫<0,π/2>(1+cos2u)du
=4[u+(1/2)sin2u]|<0,π/2>
=2π。
解1:原式=∫<-2,0>(x+1)√(-4x-x^2)dx
+∫<0,2>(x+1)√(4x-x^2)dx
=∫<-2,0>(x+1)√[4-(x+2)^2]dx
+∫<0,2>(x+1)√[4-(x-2)^2]dx
=∫<0,π/2>(-1+2sinu)*(2cosu)^2du(x=-2+2sinu)
+∫<-π/2,0>(3+2sinv)(2cosv)^2dv(x=2+2sinv)
=2∫<0,π/2>(-1+sinu-cos2u+sin3u)du
+2∫<-π/2,0>(3+sinv+3cos2v+sin3v)dv
=2[-u-cosu-(1/2)sin2u-(1/3)cos3u]|<0,π/2>
+2[3v-cosv+(3/2)sin2v-(1/3)cos3v]|<-π/2,0>
=2[-π/2+1+1/3]+2[3π/2-1-1/3]
=2π。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询