讨论f(x)=x/(1-e^(x/1-x))的连续性并指出间断点类型
在x趋向于0时,等于-1,为可去间断点。在x趋向于1时,左极限为0,右极限为1,所以为跳跃间断点。
当x从左侧趋于1,1-x从右侧趋于0,x/(1-x)趋于正无穷大,e^(x/(1-x))趋于正无穷大,1-e^(x/(1-x))趋于负无穷大,f(x)=1/[1-e^(x/(1-x))]趋于0。
当x从右侧趋于1,1-x从左侧趋于0,x/(1-x)趋于负无穷大,e^(x/(1-x))相当于e的负无穷大次方,即相当于“e的正无穷大次方”分之一,即e^(x/(1-x))趋于0,则1-e^(x/(1-x))趋于1,f(x)=1/[1-e^(x/(1-x))]趋于1。
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
在x趋向于0时,等于-1,为可去间断点。在x趋向于1时,左极限为0,右极限为1,所以为跳跃间断点
当x从左侧趋于1,1-x从右侧趋于0,x/(1-x)趋于正无穷大,e^(x/(1-x))趋于正无穷大,1-e^(x/(1-x))趋于负无穷大,f(x)=1/[1-e^(x/(1-x))]趋于0。
当x从右侧趋于1,1-x从左侧趋于0,x/(1-x)趋于负无穷大,e^(x/(1-x))相当于e的负无穷大次方,即相当于“e的正无穷大次方”分之一,即e^(x/(1-x))趋于0,则1-e^(x/(1-x))趋于1,f(x)=1/[1-e^(x/(1-x))]趋于1。
扩展资料:
设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:
(1)函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-);
(2)函数f(x)在点x0的左右极限中至少有一个不存在;
(3)函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。
则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。
参考资料来源:百度百科-间断点
这题也就是分析x=1与x=0的左右极限
相等就是连续
趋于0处f(x)=-1也可去
广告 您可能关注的内容 |