高中范围内的参数方程讲解

 我来答
创作者TlL29Tg71m
2020-02-14 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.6万
采纳率:33%
帮助的人:1123万
展开全部
定义
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),(1)且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2)
圆的参数方程
x=a+r
cosθ
y=b+r
sinθ
(θ属于[0,2π)
)
(a,b)为圆心坐标
r为圆半径
θ为参数
椭圆的参数方程
x=a
cosθ
y=b
sinθ
(θ属于[0,2π)
)
a为长半轴

b为短半轴长
θ为参数
双曲线的参数方程
x=a
secθ
(正割)
y=b
tanθ
a为实半轴长
b为虚半轴长
θ为参数
抛物线的参数方程
x=2pt^2
y=2pt
p表示焦点到准线的距离
t为参数
直线的参数方程
x=x'+tcosa
y=y'+tsina
,
x',
y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
或者x=x'+ut,y=y'+vt
(t属于R)
x',
y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式