f(ξ)在(a,b)上连续,(a,b)内可导,且f(a)=f(b)=0,证:存在ξ∈(a,b)使ξf(ξ)+f'(ξ)=0
f(ξ)在(a,b)上连续,(a,b)内可导,且f(a)=f(b)=0,证:存在ξ∈(a,b)使ξf(ξ)+f'(ξ)=0...
f(ξ)在(a,b)上连续,(a,b)内可导,且f(a)=f(b)=0,证:存在ξ∈(a,b)使ξf(ξ)+f'(ξ)=0
展开
展开全部
证明:很简单啊,用罗尔定理证明
设F(x)=xf(x),显然函数F(x)在区间[a,b]上连续,在(a,b)内可导,
且F(a)=af(a)=0,F(b)=bf(b)=0,即F(a)=F(b)
所以根据罗尔定理,在(a,b)内至少存在一点ξ,使得F′(ξ)=f(ξ)+ξf′(ξ)=0.
故得证.
设F(x)=xf(x),显然函数F(x)在区间[a,b]上连续,在(a,b)内可导,
且F(a)=af(a)=0,F(b)=bf(b)=0,即F(a)=F(b)
所以根据罗尔定理,在(a,b)内至少存在一点ξ,使得F′(ξ)=f(ξ)+ξf′(ξ)=0.
故得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询