已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;(Ⅱ)若bn=n(an+1)2,求数列{...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*). (Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式; (Ⅱ)若bn=n(an+1)2,求数列{bn}的前n项和Sn.
展开
1个回答
展开全部
解答:(I)证明:∵数列{an}满足a1=1,an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2×2n-1=2n,
∴an=2n-1.
(II)解:由(I)可知:bn=
n•2n
2
=n•2n-1.
∴Sn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1,
2Sn=1×2+2×22+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=
2n-1
2-1
-n•2n=2n-1-n•2n=(1-n)•2n-1.
∴Sn=(n-1)•2n+1.
∴数列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2×2n-1=2n,
∴an=2n-1.
(II)解:由(I)可知:bn=
n•2n
2
=n•2n-1.
∴Sn=1×20+2×21+3×22+…+(n-1)•2n-2+n•2n-1,
2Sn=1×2+2×22+…+(n-1)•2n-1+n•2n,
∴-Sn=1+2+22+…+2n-1-n•2n=
2n-1
2-1
-n•2n=2n-1-n•2n=(1-n)•2n-1.
∴Sn=(n-1)•2n+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询