4个回答
展开全部
(27)
∫(π/6->π/2) (cosx)^2 dx
=(1/2)∫(π/6->π/2) (1+cos2x) dx
=(1/2)[x+(1/2)sin2x]|(π/6->π/2)
=(1/2)[ (π/2+0)- (π/6 -(1/2)(√3/2)) ]
=(1/2)(π/3 +√3/4)
=π/6 +√3/8
(28)
∫(1->3) xe^(2x) dx
=(1/2)∫(1->3) x de^(2x)
=(1/2)[ x.e^(2x) ]|(1->3) -(1/2)∫(1->3) e^(2x) dx
=(1/2)(3e^6-e^2) -(1/4)[e^(2x)]|(1->3)
=(1/2)(3e^6-e^2) -(1/4)(e^6 -e^2)
=(5/4)e^6 -(1/4)e^2
(29)
∫(1->e^3) dx/[x.√(1+lnx)]
=∫(1->e^3) d(1+lnx)/√(1+lnx)
=2[√(1+lnx)]|(1->e^3)
=2(2-1)
=2
∫(π/6->π/2) (cosx)^2 dx
=(1/2)∫(π/6->π/2) (1+cos2x) dx
=(1/2)[x+(1/2)sin2x]|(π/6->π/2)
=(1/2)[ (π/2+0)- (π/6 -(1/2)(√3/2)) ]
=(1/2)(π/3 +√3/4)
=π/6 +√3/8
(28)
∫(1->3) xe^(2x) dx
=(1/2)∫(1->3) x de^(2x)
=(1/2)[ x.e^(2x) ]|(1->3) -(1/2)∫(1->3) e^(2x) dx
=(1/2)(3e^6-e^2) -(1/4)[e^(2x)]|(1->3)
=(1/2)(3e^6-e^2) -(1/4)(e^6 -e^2)
=(5/4)e^6 -(1/4)e^2
(29)
∫(1->e^3) dx/[x.√(1+lnx)]
=∫(1->e^3) d(1+lnx)/√(1+lnx)
=2[√(1+lnx)]|(1->e^3)
=2(2-1)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是一个非常好的一个教育,应该是努力学习,努力提高自己。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |