设f(x)为连续函数,证明 ∫ f(3-x) dx= ∫ f(x) dx上限是2 下限是1

 我来答
华源网络
2022-07-03 · TA获得超过5574个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:144万
展开全部
∫ (1,2)f(3-x) dx
令t=3-x, 则x=3-t, 从而dx=-dt
从而∫ (1,2)f(3-x) dx=∫ (2,1)f(t) (-dt)=∫ (1,2)f(t) dt=
=∫ (1,2)f(x) dx.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式