如何直接看出0到pai/2定积分cost/(sint+cost)与sint/(sint+cost)相等?
1个回答
展开全部
只需令x=pi/2-t,则当x=0,t=pi/2,当x=pi/2,t=0,dx=-dt,那么
∫(0,pi/2)cosx/(sinx+cosx)dx
=-∫(pi/2,0)sint/(sint+cost)dt
=∫(0,pi/2)sinx/(sinx+cosx)dx
所以
∫(0,pi/2)cosx/(sinx+cosx)dx=∫(0,pi/2)sinx/(sinx+cosx)dx
=(1/2)[∫(0,pi/2)cosx/(sinx+cosx)dx+∫(0,pi/2)sinx/(sinx+cosx)dx]
=(1/2)∫(0,pi/2)(sinx+cosx)/(sinx+cosx)dx
=(1/2)∫(0,pi/2)dx=pi/4
∫(0,pi/2)cosx/(sinx+cosx)dx
=-∫(pi/2,0)sint/(sint+cost)dt
=∫(0,pi/2)sinx/(sinx+cosx)dx
所以
∫(0,pi/2)cosx/(sinx+cosx)dx=∫(0,pi/2)sinx/(sinx+cosx)dx
=(1/2)[∫(0,pi/2)cosx/(sinx+cosx)dx+∫(0,pi/2)sinx/(sinx+cosx)dx]
=(1/2)∫(0,pi/2)(sinx+cosx)/(sinx+cosx)dx
=(1/2)∫(0,pi/2)dx=pi/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询