高三数学函数的零点与方程根的联系知识点

 我来答
名成教育17
2022-06-03 · TA获得超过5465个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:69.8万
展开全部

  高三数学中,函数的零点与方程根的联系应是学生学习的难点,下面是我给大家带来的高三数学函数的零点与方程根的联系知识点,希望对你有帮助。

  高三数学函数的零点与方程根的联系知识点(一)

  函数的零点与方程根的联系

  函数零点的定义:

  一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。

  函数零点具有的性质:

  对于任意函数y=(x)只要它的图象是连续不间断的,则有:

  (1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.

  (2)在相邻两个零点之间所有的函数值保持同号,

  方程的根与函数的零点的联系:

  方程f(x)=0有实根

  函数y=f(x)的图像与x轴有交点

  函数y=f(x)有零点

  高三数学函数的零点与方程根的联系知识点(二)

  1.对数

  (1)对数的定义:

  如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.

  (2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.

  (3)对数运算性质:

  ①loga(MN)=logaM+logaN.

  ②loga(M/N)=logaM-logaN.

  ③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)

  ④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).

  2.对数函数

  (1)对数函数的定义

  函数y=logax(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).

  注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1

  对数函数的底数为什么要大于0且不为1呢?

  在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16

  (2)对数函数的性质:

  ①定义域:(0,+∞).

  ②值域:R.

  ③过点(1,0),即当x=1时,y=0.

  ④当a>1时,在(0,+∞)上是增函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式