一元线性回归模型的参数估计方法

 我来答
小么社会生活说
2023-01-21 · TA获得超过1207个赞
知道大有可为答主
回答量:6182
采纳率:100%
帮助的人:96.2万
展开全部

一元线性回归模型的参数估计方法是:

常用估计方法为最小二乘法OLS,为了使OLS得到的估计量具有良好的性质,需要对模型给出一些基本的假定。如果基本假定不满足,OLS方法可能不再适用,或不再具有良好性质。严格来说,基本假定是针对OLS方法而言的,而非针对模型。

一元线性回归模型表示如下:

yt = β0 + β1 xt +ut(1)上式表示变量yt 和xt之间的真实关系。其中yt 称作被解释变量(或相依变量、因变量),xt称作解释变量(或独立变量、自变量),ut称作随机误差项,β0称作常数项(截距项),β1称作回归系数。

在模型 (1) 中,xt是影响yt变化的重要解释变量。β0和β1也称作回归参数。这两个量通常是未知的,需要估计。

t表示序数。当t表示时间序数时,xt和yt称为时间序列数据。当t表示非时间序数时,xt和yt称为截面数据。ut则包括了除xt以外的影响yt变化的众多微小因素。ut的变化是不可控的。上述模型可以分为两部分。(1)β0 +β1 xt是非随机部分;(2)ut是随机部分。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式