设a,b是n阶实对称矩阵,a是正定矩阵,证明存在可逆矩阵T,使得T

 我来答
白露饮尘霜17
2022-09-16 · TA获得超过1.3万个赞
知道大有可为答主
回答量:7006
采纳率:100%
帮助的人:39.9万
展开全部
A正定,存在可逆阵D,使得D’AZD=E,记M=D‘BD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'BC=Q'D'BDQ=Q'MQ是对角阵,C'AC=Q'D'ADQ=Q'EQ=E是对角阵.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式