若A,B为同型矩阵,证明r(A+B)≤r(A)+r(B)

 我来答
名成教育17
2022-08-06 · TA获得超过5512个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:72.6万
展开全部
A,B都是m*n的矩阵,则需证r(A+B)≤r(A)+r(B)
设A的列向量中α(i1),α(i2),...,α(ir)是其中一个极大线性无关组
β(j1),β(j2),...,β(jt)是B的列向量的一个极大线性无关组.
那么A的每一个列向量均可以由α(i1),α(i2),...,α(ir)线性表出,
B的每一个列向量均可以用β(j1),β(j2),...,β(jt)线性表出.
于是A+B的每一个列向量α(k)+β(k)都能用α(i1),α(i2),...,α(ir),β(j1),β(j2),...,β(jt)线性表出.
因此A+B列向量组中极大线性无关组的向量个数不大于α(i1),α(i2),...,
α(ir),β(j1),β(j2),...,β(jt)中的向量个数,即r(A+B)≤r+t=r(A)+r(B)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式