2个回答
展开全部
∫[0→π/2]f(sinx)dx
= ∫[0→1]f(t)d(arcsint) (变量代换t = sinx,改上下限)
= ∫[0→1]f(t)/√(1-t²)dt
∫[0→π/2]f(cosx)dx
= ∫[1→0]f(t)d(arccost) (变量代换t = cosx,改上下限)
= -∫[1→0]f(t)/√(1-t²)dt
= ∫[0→1]f(t)/√(1-t²)dt
所以,∫[0→π/2]f(sinx)dx = ∫[0→π/2]f(cosx)dx.
根据上述结论,∫[0→π/2] sin²x dx = ∫[0→π/2] cos²x dx,并且
∫[0→π/2] sin²x dx + ∫[0→π/2] cos²x dx = ∫[0→π/2] 1 dx = π/2,
所以∫[0→π/2] sin²x dx = ∫[0→π/2] cos²x dx = π/4.
= ∫[0→1]f(t)d(arcsint) (变量代换t = sinx,改上下限)
= ∫[0→1]f(t)/√(1-t²)dt
∫[0→π/2]f(cosx)dx
= ∫[1→0]f(t)d(arccost) (变量代换t = cosx,改上下限)
= -∫[1→0]f(t)/√(1-t²)dt
= ∫[0→1]f(t)/√(1-t²)dt
所以,∫[0→π/2]f(sinx)dx = ∫[0→π/2]f(cosx)dx.
根据上述结论,∫[0→π/2] sin²x dx = ∫[0→π/2] cos²x dx,并且
∫[0→π/2] sin²x dx + ∫[0→π/2] cos²x dx = ∫[0→π/2] 1 dx = π/2,
所以∫[0→π/2] sin²x dx = ∫[0→π/2] cos²x dx = π/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询