求高手解答,高数问题 20
这是个递推积分
I(0) = x + C
I(1) = ∫dx/(x²+a²) = (1/a)arctan(x/a) + C
...
I(n) = ∫dx/(x²+a²)^n
令x = a tant,则dx = a sec²t dt
I(n) = ∫a sec²t dt/[a^2n * (sect)^2n]
= 1/[a^(2n-1)] * ∫dt/(sect)^(2n-2)
= 1/[a^(2n-1)] * ∫(cost)^(2n-2) dt
= 1/[a^(2n-1)] * ∫(cost)^(2n-3) d(sint)
= 1/[a^(2n-1)] * {sint * (cost)^(2n-3) - ∫sint d[(cost)^(2n-3)]}
= 1/[a^(2n-1)] * [sint * (cost)^(2n-3) + (2n-3)∫sin²t (cost)^(2n-4) dt]
= 1/[a^(2n-1)] * [sint * (cost)^(2n-3) + (2n-3)∫(1-cos²t) (cost)^(2n-4) dt]
= 1/[a^(2n-1)] * [sint * (cost)^(2n-3) + (2n-3)∫(cost)^(2n-4) dt - (2n-3)∫(cost)^(2n-2) dt]
整理得I(n) = 1/[a^(2n-1)] * sint * (cost)^(2n-3) + a² (2n-3) I(n-1) - (2n-3) I(n)
即(2n-2) I(n) = 1/[a^(2n-1)] * sint * (cost)^(2n-3) + a² (2n-3) I(n-1)
下面就用到数列知识了
n=2,3,4,5...分别代入得到
2I(2) = sintcost/a³ + a² I(1)
4I(3) = sint(cost)³/a^5 + 3a² I(2)
6I(4) = sint(cost)^5/a^7 + 5a² I(3)
8I(5) = sint(cost)^7/a^9 + 7a² I(4)
...
消去I(2),I(3),I(4)...得
I(2) = sintcost/2a³ + a²/2 I(1)
I(3) = sint(cost)³/4a^5 + 3a²/4 I(2) = sint(cost)³/4a^5 + 3a²/4 [sintcost/2a³ + a²/2 I(1)]
I(4) = sint(cost)^5/6a^7 + 5a²/6 I(3) = sint(cost)^5/6a^7 + 5a²/6 * sint(cost)³/4a^5 + 5a²/6 * 3a²/4 [sintcost/2a³ + a²/2 I(1)]
I(5) = sint(cost)^7/8a^9 + 7a²/8 I(4) = sint(cost)^7/8a^9 + 7a²/8 * sint(cost)^5/6a^7 + 7a²/8 * 5a²/6 * sint(cost)³/4a^5 + 7a²/8 * 5a²/6 * 3a²/4 [sintcost/2a³ + a²/2 I(1)]
...
依次递推得到
I(n) = sint(cost)^(2n-3)/[(2n-2) a^(2n-1)] + (2n-3)a²/(2n-2) * sint(cost)^(2n-5)/[(2n-4) a^(2n-3)] + (2n-3)a²/(2n-2) * (2n-5)a²/(2n-4) * sint(cost)^(2n-7)/[(2n-6) a^(2n-5)] + ... + (2n-3)a²/(2n-2) * (2n-5)a²/(2n-4) *...* (2n-2k-1)a²/(2n-2k) * sint(cost)^(2n-2k-3)/[(2n-2k-2) a^(2n-2k-1)] + ... + (2n-3)a²/(2n-2) * (2n-5)a²/(2n-4) *...* 5a²/6 * 3a²/4 sintcost/2a³ + (2n-3)a²/(2n-2) * (2n-5)a²/(2n-4) *...* 5a²/6 * 3a²/4 * a²/2 I(1)
看不清楚可以看图
参考资料: http://hiphotos.baidu.com/shenqi41271/pic/item/5cd4c409de769be73ac7633a.jpeg
两边分别求导得 1/y=1/(x²+a²)^n
所以 y=(x²+a²)^n