已知abc是三角形的三边长,求证a/(b+c-a)+b/(c+a-b)+c/(a+b-c)≥3
2个回答
展开全部
三角形的三边则a+b-c>0,b+c-a>0,c+a-b>0,
由均值不等式
(c+a-b)/(b+c-a)+(b+c-a)/(c+a-b)>=2根号[(c+a-b)/(b+c-a)*(b+c-a)/(c+a-b)2]
同理(a+b-c)/(c+a-b)+(c+a-b)/(a+b-c)>=2
(a+b-c)/(b+c-a)+(b+c-a)/(a+b-c)>=2
相加
2a/(b+c-a)+2b/(c+a-b)+2c/(a+b-c)>=6,
所以a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
由均值不等式
(c+a-b)/(b+c-a)+(b+c-a)/(c+a-b)>=2根号[(c+a-b)/(b+c-a)*(b+c-a)/(c+a-b)2]
同理(a+b-c)/(c+a-b)+(c+a-b)/(a+b-c)>=2
(a+b-c)/(b+c-a)+(b+c-a)/(a+b-c)>=2
相加
2a/(b+c-a)+2b/(c+a-b)+2c/(a+b-c)>=6,
所以a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询