
如何证明1^3+2^3+...+n^3=[n(n+1)/2]^2 成立
2个回答
展开全部
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
这个会不会,求原式要用到的。
(1+1)^4=1^4+4×1^3+6×1^2+4×1^1+1
(2+1)^4=2^4+4×2^3+6×2^2+4×2^1+1
(3+1)^4=3^4+4×3^3+6×3^2+4×3^1+1
……
(n+1)^4=n^4+4×n^3+6×n^2+4×n^1+1
上式相加,左右两边的2^4,3^4,4^4,……n^4可以消去
(n+1)^4=1^4+4×(1^3+2^3+3^3+……+n^3)+6×(1^2+2^2+3^2+……+n^2)+4×(1+2+3+……+n)+n
设A=1^3+2^3+3^3+……+n^3
(n+1)^4=n^4+4×n^3+6×n^2+4×n^1+1=1+4A+6×n(n+1)(2n+1)/6+4×n(n+1)/2+n
化简得A=[n(n+1)/2]^2
求1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6方法是一样的,把(n+1)^3展开相加。
这个会不会,求原式要用到的。
(1+1)^4=1^4+4×1^3+6×1^2+4×1^1+1
(2+1)^4=2^4+4×2^3+6×2^2+4×2^1+1
(3+1)^4=3^4+4×3^3+6×3^2+4×3^1+1
……
(n+1)^4=n^4+4×n^3+6×n^2+4×n^1+1
上式相加,左右两边的2^4,3^4,4^4,……n^4可以消去
(n+1)^4=1^4+4×(1^3+2^3+3^3+……+n^3)+6×(1^2+2^2+3^2+……+n^2)+4×(1+2+3+……+n)+n
设A=1^3+2^3+3^3+……+n^3
(n+1)^4=n^4+4×n^3+6×n^2+4×n^1+1=1+4A+6×n(n+1)(2n+1)/6+4×n(n+1)/2+n
化简得A=[n(n+1)/2]^2
求1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6方法是一样的,把(n+1)^3展开相加。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询