已知函数fx=Asin(wx+φ) (x∈R,A>0,w>0,0<φ<π/2)的部分图像如图所示。
1、求fx解析式。2、设gx=[f(x-π/12)]^2,求函数gx在x∈[-π/6,3/π]上的最大值,并确定此时x的最大值。求详细解题过程。...
1、求fx解析式。2、设gx=[f(x-π/12)]^2,求函数gx在x∈[-π/6,3/π]上的最大值,并确定此时x的最大值。
求详细解题过程。 展开
求详细解题过程。 展开
2个回答
展开全部
A=2
T=4*[π/6-(-π/6)]=4π/3w=2π/(4π/3)=1.5f(x)=2sin(1.5x+φ)2sin(1.5*π/6+φ)=2π/6+φ=π/2φ=π/3
f(x)=2sin(1.5x+π/3)
g(x)=[f(x-π/12)]^2
=[2sin(1.5(x-π/12)+π/3)]^2
=[2sin(1.5x+π/12)]^2
=2-2cos(3x+π/6)
-π/6≤x≤π/3
-π/3≤3x+π/6≤7π/6
3x+π/6=π
x=5π/18
ymax=4
T=4*[π/6-(-π/6)]=4π/3w=2π/(4π/3)=1.5f(x)=2sin(1.5x+φ)2sin(1.5*π/6+φ)=2π/6+φ=π/2φ=π/3
f(x)=2sin(1.5x+π/3)
g(x)=[f(x-π/12)]^2
=[2sin(1.5(x-π/12)+π/3)]^2
=[2sin(1.5x+π/12)]^2
=2-2cos(3x+π/6)
-π/6≤x≤π/3
-π/3≤3x+π/6≤7π/6
3x+π/6=π
x=5π/18
ymax=4
追问
这是解答题,求正规解题过程。
追答
解:1)由函数图像可知:A=2
T=4*[π/6-(-π/6)]=4π/3
∴w=2π/(4π/3)=1.5
∴f(x)=2sin(1.5x+φ)
把(π/6,2)代入函数解析式得:
2sin(1.5*π/6+φ)=2
∵0<φ<π/2
∴π/6+φ=π/2
∴φ=π/3
因此,函数解析式为:f(x)=2sin(1.5x+π/3)
2)g(x)=[f(x-π/12)]^2
=[2sin(1.5(x-π/12)+π/3)]^2
=[2sin(1.5x+π/12)]^2
=2-2cos(3x+π/6)
∵-π/6≤x≤π/3
∴-π/3≤3x+π/6≤7π/6
当cos(3x+π/6)=-1时,g(x)值最大
3x+π/6=π
x=5π/18
∴ymax=4
因此,当x=5π/18时,g(x)有最大值,为4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询