
已知x/(x^2+x-1)=1/9,求x^2/(x^4+x^2+1)的值
2个回答
展开全部
答:
x/(x^2+x-1)=1/9
取倒数:
(x^2+x-1)/x=9
x+1-1/x=9
x-1/x=8
所以:
x^2/(x^4+x^2+1) 分子分母同除以x^2得:
=1/(x^2+1+1/x^2)
=1/[(x-1/x)^2+3]
=1/(8^2+3)
=1/67
x/(x^2+x-1)=1/9
取倒数:
(x^2+x-1)/x=9
x+1-1/x=9
x-1/x=8
所以:
x^2/(x^4+x^2+1) 分子分母同除以x^2得:
=1/(x^2+1+1/x^2)
=1/[(x-1/x)^2+3]
=1/(8^2+3)
=1/67
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询