已知数列{an}的各项均为正数,Sn是数列{an}的前几项和,且4Sn=an^2十2an一3,(1
已知数列{an}的各项均为正数,Sn是数列{an}的前几项和,且4Sn=an^2十2an一3,(1)求数列{an}的通项公式,(2),已知bn=2^n,求Tn=a1b1十...
已知数列{an}的各项均为正数,Sn是数列{an}的前几项和,且4Sn=an^2十2an一3,(1)求数列{an}的通项公式,(2),已知bn=2^n,求Tn=a1b1十a2b2十…anbn的值
展开
展开全部
解:
(1)
根据题意:
4Sn = (an)² + 2an - 3
4S(n-1)=[a(n-1)]² + 2a(n-1) -3
两式相减,再根据an = Sn - S(n-1),得:
4an = [an -a(n-1) ]·[an+a(n-1)]+2an -2a(n-1)
2[an+a(n-1)] = [an -a(n-1) ]·[an+a(n-1)]
因为:an>0,因此:an+a(n-1)≠0,所以:
an -a(n-1) = 2
4S1 = 4a1 = (a1)²+2a1-3
解得:
a1=3
a1=-1(舍去)
因此,数列an是公差为2的等差数列,因此:
an = 2n+1
(2)
Tn = 3×2 + 5×2² + 7×2³ +.......+(2n-1)·[2^(n-1)]+(2n+1)·(2^n)
2Tn= 3×2² + 5×2³ +.......+(2n-3)·[2^(n-1)]+(2n-1)·(2^n)+(2n+1)·[2^(n+1)]
于是:
-Tn = 3×2+ 2×(2²+2³+......+2^n) - (2n+1)·[2^(n+1)]
= -2 + (1-2n)·[2^(n+1)]
Tn = (2n-1)·[2^(n+1)] + 2
(1)
根据题意:
4Sn = (an)² + 2an - 3
4S(n-1)=[a(n-1)]² + 2a(n-1) -3
两式相减,再根据an = Sn - S(n-1),得:
4an = [an -a(n-1) ]·[an+a(n-1)]+2an -2a(n-1)
2[an+a(n-1)] = [an -a(n-1) ]·[an+a(n-1)]
因为:an>0,因此:an+a(n-1)≠0,所以:
an -a(n-1) = 2
4S1 = 4a1 = (a1)²+2a1-3
解得:
a1=3
a1=-1(舍去)
因此,数列an是公差为2的等差数列,因此:
an = 2n+1
(2)
Tn = 3×2 + 5×2² + 7×2³ +.......+(2n-1)·[2^(n-1)]+(2n+1)·(2^n)
2Tn= 3×2² + 5×2³ +.......+(2n-3)·[2^(n-1)]+(2n-1)·(2^n)+(2n+1)·[2^(n+1)]
于是:
-Tn = 3×2+ 2×(2²+2³+......+2^n) - (2n+1)·[2^(n+1)]
= -2 + (1-2n)·[2^(n+1)]
Tn = (2n-1)·[2^(n+1)] + 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询