4个回答
展开全部
每道题都是对等式两边的x求导
(1)2x-2yy'+2y+2xy'=2
(x-y)y'=1-x-y
y'=(1-x-y)/(x-y)
(2)y'=1+y'/y
yy'=y+y'
y'=y/(y-1)
(3)e^(x+y)*(1+y')=y+xy'
[e^(x+y)-x]y'=y-e^(x+y)
y'=[y-e^(x+y)]/[e^(x+y)-x]
(4)[(xy'-y)/x^2]/(1+y^2/x^2)=[(2x+2yy')/2√(x^2+y^2)]/√(x^2+y^2)
(xy'-y)/(x^2+y^2)=(x+yy')/(x^2+y^2)
xy'-y=x+yy'
y'=(x+y)/(x-y)
(5)e^(xy)*(y+xy')+y'lnx+y/x=-2sin2x
[e^(xy)*x+lnx]y'=-2sin2x-e^(xy)*y-y/x
y'=-[2sin2x+e^(xy)*y+y/x]/[e^(xy)*x+lnx]
(6)e^y+e^y*y'x+2yy'=0
(e^y*x+2y)y'=-e^y
y'=-(e^y)/(e^y*x+2y)
(7)1-cos(y/x)*(y'x-y)/x^2=0
y'x-y=x^2/cos(y/x)
y'=x*sec(y/x)+y/x
(8)-sin(x^2-y)*(2x-y')=1
y'-2x=csc(x^2-y)
y'=2x+csc(x^2-y)
(1)2x-2yy'+2y+2xy'=2
(x-y)y'=1-x-y
y'=(1-x-y)/(x-y)
(2)y'=1+y'/y
yy'=y+y'
y'=y/(y-1)
(3)e^(x+y)*(1+y')=y+xy'
[e^(x+y)-x]y'=y-e^(x+y)
y'=[y-e^(x+y)]/[e^(x+y)-x]
(4)[(xy'-y)/x^2]/(1+y^2/x^2)=[(2x+2yy')/2√(x^2+y^2)]/√(x^2+y^2)
(xy'-y)/(x^2+y^2)=(x+yy')/(x^2+y^2)
xy'-y=x+yy'
y'=(x+y)/(x-y)
(5)e^(xy)*(y+xy')+y'lnx+y/x=-2sin2x
[e^(xy)*x+lnx]y'=-2sin2x-e^(xy)*y-y/x
y'=-[2sin2x+e^(xy)*y+y/x]/[e^(xy)*x+lnx]
(6)e^y+e^y*y'x+2yy'=0
(e^y*x+2y)y'=-e^y
y'=-(e^y)/(e^y*x+2y)
(7)1-cos(y/x)*(y'x-y)/x^2=0
y'x-y=x^2/cos(y/x)
y'=x*sec(y/x)+y/x
(8)-sin(x^2-y)*(2x-y')=1
y'-2x=csc(x^2-y)
y'=2x+csc(x^2-y)
追问
我记得第一题的答案好像是分数。。
追答
客气
展开全部
(1) 2x - 2y*y' + 2y + 2xy' = 2
y'= (1 - x - y)/( x - y )
(2) y' = 1 + 1/y * y'
y' = 1/(1-1/y)
(3) e^(x+y) * (1+y') = y + xy'
y' = [y - e^(x+y)] / [e^(x+y) - x]
(4)1/[1+(y/x)^2] * (y'/x - y/x^2) = 1/[2*(x^2+y^2)] * (2x + 2y*y')
(y'x-y) = x + y*y'
y' = (x+y)/(x-y)
(5) e^xy * (y+xy') + y/x + y' * lnx = -2sin2x
y' = (-2sin2x - y* e^xy - y/x)/(x* e^xy + lnx)
(6) e^y * y' *x + e^y + 2y*y' = 0
y' = -e^y / (x*e^y + 2y)
(7) 1 - cos(y/x) * (y'x-y)/x^2 =0
y'=x / cos(y/x) + y/x
(8) -sin(x^2 -y) * (2x-y') = 1
y' = 1 / sin(x^2 - y) + 2x
y'= (1 - x - y)/( x - y )
(2) y' = 1 + 1/y * y'
y' = 1/(1-1/y)
(3) e^(x+y) * (1+y') = y + xy'
y' = [y - e^(x+y)] / [e^(x+y) - x]
(4)1/[1+(y/x)^2] * (y'/x - y/x^2) = 1/[2*(x^2+y^2)] * (2x + 2y*y')
(y'x-y) = x + y*y'
y' = (x+y)/(x-y)
(5) e^xy * (y+xy') + y/x + y' * lnx = -2sin2x
y' = (-2sin2x - y* e^xy - y/x)/(x* e^xy + lnx)
(6) e^y * y' *x + e^y + 2y*y' = 0
y' = -e^y / (x*e^y + 2y)
(7) 1 - cos(y/x) * (y'x-y)/x^2 =0
y'=x / cos(y/x) + y/x
(8) -sin(x^2 -y) * (2x-y') = 1
y' = 1 / sin(x^2 - y) + 2x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
孩纸,这也太多了吧。。。。
而且到底是X对Y求导,还是Y对X求导,还是两个都要,好多
而且到底是X对Y求导,还是Y对X求导,还是两个都要,好多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两边对x求导,再整理一下就得出答案了呀,看看例题不就会了吧,导数是高数里的基础。比如,第二题两边对x求导后,整理得y'=y/y-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |