已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/
已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/(x^2+y^2)...
已知函数f(x,y)在(0,0)的某个邻域内连续lim(x,y)趋于(0,0)f(x,y)-xy/(x^2+y^2)
展开
展开全部
由lim x→0,y→0 f(x,y)-xy (x2+y2)2 =1知。
因此分母的极限趋于0,故分子的极限必为零,从而有f(0,0)=0;因为极限等于1;故f(x,y)-xy~(x2+y2)2(|x|,|y|充分小时),于是f(x,y)~xy+(x2+y2)2。
因为:f(0,0)=0;所以:f(x,y)-f(0,0)~xy+(x2+y2)2。
可见当y=x且|x|充分小时,f(x,y)-f(0,0)≈x2+4x4>0;而当y=-x且|x|充分小时,f(x,y)-f(0,0)≈-x2+4x4<0。故点(0,0)不是f(x,y)的极值点。
函数的近代定义
是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
展开全部
直观上, 条件说明f(x,y)在原点和xy很接近.但是原点只是xy的鞍点, 于是原点也不是f(x,y)的极值点.严格写下来是这样:∵lim{(x,y) → (0,0)} (f(x,y)-xy)/(x²+y²)² = 1,∴对ε = 1, 存在δ > 0, 使得当|x| < δ, |y| < δ时, 有0 = 1-ε < (f(x,y)-xy)/(x²+y²)² < 1+ε = 2.即xy < f(x,y) < xy+2(x²+y²)² ①.又由f(x,y)在原点连续, 可得f(0,0) = lim{(x,y) → (0,0)} f(x,y) = 0.考虑点列(1/n,1/n), 易见n → ∞时(1/n,1/n) → (0,0).当n > 1/δ时, 有1/n < δ, 代入①的左端得f(1/n,1/n) > 1/n² > 0.因此在原点的任意邻域内存在使f(x,y)取正值的点.再考虑点列(1/n,-1/n), 易见n → ∞时(1/n,-1/n) → (0,0).当n > 1/δ且n > 3时, 有1/n < δ, 代入①的右端得f(1/n,-1/n) < -1/n²+8/n⁴ = (8-n²)/n⁴ < 0.因此在原点的任意邻域内存在使f(x,y)取负值的点.于是原点不为极值点.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |