已知函数f(x)=ln x-ax (a∈R,a>0).(1)求函数f(x)的单调区间;(2)求函数f(x)在[1,2]上

已知函数f(x)=lnx-ax(a∈R,a>0).(1)求函数f(x)的单调区间;(2)求函数f(x)在[1,2]上的最小值.... 已知函数f(x)=ln x-ax (a∈R,a>0).(1)求函数f(x)的单调区间;(2)求函数f(x)在[1,2]上的最小值. 展开
 我来答
哆啦A梦478
2015-01-29 · 超过73用户采纳过TA的回答
知道答主
回答量:126
采纳率:100%
帮助的人:133万
展开全部
解   (1)函数f(x)的定义域 为(0,+∞).
f′(x)=
1
x
-a=
1-ax
x
                                          (2分)
因为a>0,令f′(x)=
1
x
-a=0,可得x=
1
a

当0<x<
1
a
时,f′(x)=
1-ax
x
>0;当x>
1
a
时,f′(x)=
1-ax
x
<0,
故函数f(x)的单调递增区间为(0,
1
a
),单调递减区间为(
1
a
,+∞).(4分)
(2)①当0<
1
a
≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,
∴f(x)的最小值是f(2)=ln2-2a.(6分)
②当
1
a
≥2,即0<a≤
1
2
时,函数f(x)在区间[1,2]上是增函数,
∴f(x)的最小值是f(1)=-a.(8分)
③当1<
1
a
<2,即
1
2
<a<1时,函数f(x)在(1,
1
a
)上是增函数,在(
1
a
,2)上是减函数.
又∵f(2)-f(1)=ln2-a,
∴当
1
2
<a<ln 2时,f(x)的最小值是f(1)=-a;
当ln2≤a<1时,f(x)的最小值为f(2)=ln2-2a.(10分)
综上可知,当0<a<ln 2时,函数f(x)的最小值是f(x) min =-a;
当a≥ln2时,函数f(x)的最小值是f(x) min =ln2-2a.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式