当x>0时,证明:arctanx+1/x>π/2,步骤详细,在线等

残月军团123bf21
2014-11-30 · TA获得超过113个赞
知道答主
回答量:189
采纳率:0%
帮助的人:47.9万
展开全部
证明当x>0时,arctanx+1/x>π/2
把目标式先化为arctanx>π/2-1/x。
因为x>0,所以arctanx>0,若π/2-1/x≤0时,则一定成立,
若π/2-1/x>0,则由两边取正切值,得x>1/tan(1/x)。
再次转化为tan(1/x)>1/x,再次转化为tant>t。可以证明。
2013-11-18 23:29
回答:
利用函数的单调性
我知道要用到求导,f(x)=arctanx+1/x
f'(x)=1/(1+x^2)-1/x^2<0
所以f(x)单调递减
2013-11-18 23:29
回答:
左边求导为1/(1+x^2)-1/x^2=-1/x^2(x^2+1)<0
所以单调递减
在x趋近于正无穷时,左边趋近于∏ / 2,所以不等式成立~
更多追问追答
追答
我已答过
采吧
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式