已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=nlog2
已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=nlog2(an+2),求数列{1bn}的前n...
已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(1)求数列{an}的通项公式an;(2)若数列{bn}满足bn=nlog2(an+2),求数列{1bn}的前n项和Tn.
展开
御坂01505
推荐于2016-03-17
·
TA获得超过124个赞
关注
证明:(1)由S
n+2n=2a
n得S
n=2a
n-2n,
当n∈N
*时,S
n=2a
n-2n,①
当n=1时,S
1=2a
1-2,则a
1=2.
则当n≥2时,S
n-1=2a
n-1-2(n-1),②
①-②得a
n=2a
n-2a
n-1-2,即a
n=2a
n-1+2,
∴a
n+2=2(a
n-1+2),
∴
=2,
∴{a
n+2}是以a
1+2=4为首项,以2为公比的等比数列,
∴a
n+2=4?2
n-1,
∴a
n=2
n+1-2,
(2)证明:∵a
n=2
n+1-2,
∴b
n=nlog
2(a
n+2)=n(n+1),
=
=
-
,
∴T
n=
+
+…+
=1-
+
-
+…+
-
,
=1-
=
.
收起
为你推荐: