(2009?盐城模拟)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且D

(2009?盐城模拟)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连DM并延长交x轴于点C.(1... (2009?盐城模拟)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),①求MC的长;②若动点P从点A出发向点D匀速运动,速度是每秒1个单位长;同时点Q从点D出发向点C匀速运动,速度是每秒2个单位长;其中一个点到达终点时运动即结束.连接PQ交OD于点H,当△PDH为直角三角形时,求点P的坐标. 展开
 我来答
手机用户96268
2015-01-15 · 超过81用户采纳过TA的回答
知道答主
回答量:158
采纳率:80%
帮助的人:68.3万
展开全部
证明:(1)如图,连OM.
∵DO∥MB,
∴∠1=∠2,∠3=∠4.
∵OB=OM,
∴∠1=∠3.
∴∠2=∠4.
在△DAO与△DMO中,
AO=OM
∠2=∠4
DO=DO

∴△DAO≌△DMO.
∴∠OMD=∠OAD.
∵FA⊥x轴于点A,
∴∠OAD=90°.
∴∠OMD=90°.
即OM⊥DC.
∴DC切⊙O于M.(4分)

解:(2)
①∵D(-2,4),
∴OA=2(即⊙O的半径),AD=4.
由(1)知DM=AD=4,
∵△OMC∽△DAC,
MC
AC
=
OM
AD
=
2
4
=
1
2

∴AC=2MC.
在Rt△ACD中,CD=MC+4,
∵(2MC)2+42=(MC+4)2
∴MC=
8
3
或MC=0(不合,舍去),
∴MC的长为
8
3
.(8分)

②由①知CD=
20
3

当∠PHD=90°时,由切线长性质定理知DO平分∠PDQ,
∴PD=QD.
∴4-t=2t,t=
4
3
(符合题意).
∴P(-2,
4
3
).(10分)
当∠DPH=90°时,PQ∥AC,
∴△DPQ∽△DAC.
DP
DA
DQ
DC

4?t
4
2t
20
3
t=
20
11
(符合题意).
∴P(-2,
20
11
).(12分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式