(2011?呼和浩特)如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP=DCDO
(2011?呼和浩特)如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP=DCDO=23.(1)求证:直线PB是⊙O的切线;(...
(2011?呼和浩特)如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DBDP=DCDO=23.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.
展开
1个回答
展开全部
(1)证明:连接OB、OP,如图,
∵
=
=
,且∠D=∠D,
∴△BDC∽△PDO,
∴∠DBC=∠DPO,
∴BC∥OP,
∴∠BCO=∠POA,∠CBO=∠BOP
而OB=OC
∴∠OCB=∠CBO
∴∠BOP=∠POA
又∵OB=OA,OP=OP
∴△BOP≌△AOP
∴∠PBO=∠PAO
又∵PA⊥AC
∴∠PBO=90°
∴直线PB是⊙O的切线;
(2)解:由(1)知∠BCO=∠POA,
设PB=a,则BD=2a
又∵PA=PB=a
∴AD=
=2
a,
又∵BC∥OP
∴DC=2CO,
∴DC=CA=
×2
a=
a,
∴OA=
a,
∴OP=
=
∵
DB |
DP |
DC |
DO |
2 |
3 |
∴△BDC∽△PDO,
∴∠DBC=∠DPO,
∴BC∥OP,
∴∠BCO=∠POA,∠CBO=∠BOP
而OB=OC
∴∠OCB=∠CBO
∴∠BOP=∠POA
又∵OB=OA,OP=OP
∴△BOP≌△AOP
∴∠PBO=∠PAO
又∵PA⊥AC
∴∠PBO=90°
∴直线PB是⊙O的切线;
(2)解:由(1)知∠BCO=∠POA,
设PB=a,则BD=2a
又∵PA=PB=a
∴AD=
DP2?PA2 |
2 |
又∵BC∥OP
∴DC=2CO,
∴DC=CA=
1 |
2 |
2 |
2 |
∴OA=
| ||
2 |
∴OP=
OA2+PA2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|