如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的

如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1... 如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由. 展开
 我来答
骚哥909922
2014-08-27 · 超过56用户采纳过TA的回答
知道答主
回答量:105
采纳率:0%
帮助的人:133万
展开全部
(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),
a
a1
=k,a=ka1
又∵c=a1
∴a=kc;

(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;
此时
a
a1
b
b1
c
c1
=2,
∴△ABC∽△A1B1C1且c=a1

(3)解:不存在这样的△ABC和△A1B1C1,理由如下:
若k=2,则a=2a1,b=2b1,c=2c1
又∵b=a1,c=b1
∴a=2a1=2b=4b1=4c;
∴b=2c;
∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;
故不存在这样的△ABC和△A1B1C1,使得k=2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式