1个回答
展开全部
解:1+2+3+...+N=N(N+1)/2
1/(1+2+3+...+N)=2/[N(N+1)]=2*[1/N-1/(N+1)]
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+20)
=1+2*(1/2-1/3)+2*(1/3-1/4)+2*(1/4-1/5)+...+2*(1/20-1/21)
=1+2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/20-1/21)
=1+2*(1/2-1/21)
=1+1-2/101
=40/21
1/(1+2+3+...+N)=2/[N(N+1)]=2*[1/N-1/(N+1)]
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+20)
=1+2*(1/2-1/3)+2*(1/3-1/4)+2*(1/4-1/5)+...+2*(1/20-1/21)
=1+2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/20-1/21)
=1+2*(1/2-1/21)
=1+1-2/101
=40/21
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询