设f′(x)连续,f(0)=0,f′(0)≠0,求limx→0∫ x2 0f(t)dtx2∫ x 0f...
设f′(x)连续,f(0)=0,f′(0)≠0,求limx→0∫x20f(t)dtx2∫x0f(t)dt....
设f′(x)连续,f(0)=0,f′(0)≠0,求limx→0∫ x2 0f(t)dtx2∫ x 0f(t)dt.
展开
1个回答
展开全部
∵
=
=
=
而由f′(x)连续,f(0)=0,f′(0)≠0,得
=
+
=
+
=1
∴
=
=1
∴原极限=1
lim |
x→0 |
| ||
x2
|
lim |
x→0 |
2xf(x2) | ||
2x
|
=
lim |
x→0 |
2f(x2) | ||
2
|
lim |
x→0 |
4xf′(x2) |
3f(x)+xf′(x) |
而由f′(x)连续,f(0)=0,f′(0)≠0,得
lim |
x→0 |
3f(x)+xf′(x) |
4xf′(x2) |
lim |
x→0 |
3 |
4 |
f(x) |
xf′(x2) |
lim |
x→0 |
f′(x) |
4f′(x2) |
3 |
4 |
1 |
4 |
∴
lim |
x→0 |
4xf′(x2) |
3f(x)+xf′(x) |
lim |
x→0 |
1 | ||
|
∴原极限=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询