因式分解(a+b+c)³-(a³+b³+c³)
1个回答
推荐于2016-08-20 · 知道合伙人教育行家
关注
展开全部
先用用立方和差公式,再分组分
原式=(a+b+c-a)[(a+b+c)^2+a(a+b+c)+a^2]-(b+c)(b^2-bc+c^2)
=(b+c)(3a^2+3ab+3ac+2bc+b^2+c^2)-(b+c)(b^2-bc+c^2)
=(b+c)[3a^2+3ab+3ac+2bc+b^2+c^2-(b^2-bc+c^2)]
=(b+c)(3a^2+3ab+3ac+3bc)
=3(b+c)(a^2+ab+ac+bc)
=3(b+c)[a(a+b)+c(a+b)]
=3(a+b)(a+c)(b+c)
原式=(a+b+c-a)[(a+b+c)^2+a(a+b+c)+a^2]-(b+c)(b^2-bc+c^2)
=(b+c)(3a^2+3ab+3ac+2bc+b^2+c^2)-(b+c)(b^2-bc+c^2)
=(b+c)[3a^2+3ab+3ac+2bc+b^2+c^2-(b^2-bc+c^2)]
=(b+c)(3a^2+3ab+3ac+3bc)
=3(b+c)(a^2+ab+ac+bc)
=3(b+c)[a(a+b)+c(a+b)]
=3(a+b)(a+c)(b+c)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询