10个名额分配给7个班级,允许有班级没有名额,有多少种不同的分配方案?
3个回答
展开全部
首先给每个班分配一人。还剩下3个人。
这3个人分配同一个班 c(1,7)=7
这3个人分配两个班 c(2,7)A(1,2)=42
这3个人分配三个班 c(3,7)=35
一共有 7+42+35=84.
84种分配方案
扩展资料
两个常用的排列基本计数原理及应用
1、加法原理和分类计数法:
每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
展开全部
把10个相同的元素放到8个班中,每班至少一个,
可以用挡板法来解,把10个元素一字排列形成9个空
再在9个位置放置7个挡板共有c92=36种结果,
故答案为:36.
可以用挡板法来解,把10个元素一字排列形成9个空
再在9个位置放置7个挡板共有c92=36种结果,
故答案为:36.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
增加7个名额并均分到各班,问题就成了17个名额分到7个班,每班至少1个。用插空法可知应该是
C6|16.(从16个空中选6个空)
C6|16.(从16个空中选6个空)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询