已知向量m=(sinA,cosA),n=(cosB,sinB),m*n=sin2C且A,B,C分别为三角形ABC三边a,b,c所对的角.

已知向量m=(sinA,cosA),n=(cosB,sinB),m*n=sin2C且A,B,C分别为三角形ABC三边a,b,c所对的角.(1)求角C的大小(2)若sinA... 已知向量m=(sinA,cosA),n=(cosB,sinB),m*n=sin2C且A,B,C分别为三角形ABC三边a,b,c所对的角.
(1)求角C的大小
(2)若sinA,sinC,sinB成等比数列,且(向量CA)*(向量CB)=18,求c的值.
展开
百度网友77fd949
2009-08-11 · TA获得超过2585个赞
知道小有建树答主
回答量:213
采纳率:0%
帮助的人:394万
展开全部
(1)m·n=sinA·cosB+cosA·sinB=sin(A+B)=sin(180-C)=sinC
∵m·n=sin2C
∴sinC=sin2C
即C=2C或C+2C=90°,解得C=0(舍)或30°
(2)∵sinA,sinC,sinB成等比数列
∴sin²C=sinB·sinA ①
由正弦定理可知:sinA=a/2R,sinB=b/2R,sinC=c/2R
代入①中,可得:c²=a·b(即c²=|`向量b|·|向量a|)
|向量CA|·|向量CB|=|`向量b|·|向量a|
=(向量CA·向量CB)/cos<向量CA,向量CB>
=12√3
即c²=|向量CA|·|向量CB|=12√3
llhs01
2009-08-11 · TA获得超过3256个赞
知道小有建树答主
回答量:643
采纳率:100%
帮助的人:549万
展开全部
1 m*n=SinACosB+CosASinB=Sin(A+B)=Sin2C
所以 A+B=2C
180-C=2C C=60
2因为sinA,sinC,sinB成等比数列
所以sin方C=sinAsinB
(向量CA)*(向量CB)=ab*cosC=18 即ab=36
因为c²=a·b=36
所以c=6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式