
均值不等式证明题!不难的,就是我不行
已知a>b>c,求证1/(a-b)+1/(b-c)大于等于4/(a-c).麻烦这些大哥,放缩法不行…...
已知a>b>c,求证1/(a-b)+1/(b-c)大于等于4/(a-c).麻烦这些大哥,放缩法不行…
展开
2个回答
展开全部
证明:
原不等式等价于证(a-c)/(a-b)+(a-c)/(b-c)>=4
注意到(a-c)/(a-b)=(a-b+b-c)/(a-b)=1+(b-c)/(a-b)
(a-c)/(b-c)=(a+b-c-b)/(b-c)=(a-b)/(b-c)+1
于是(a-c)/(a-b)+(a-c)/(b-c)=2+(b-c)/(a-b)+(a-b)/(b-c)
由于a>b>c,所以b-c,a-b都为正数,可以用均值不等式:
(b-c)/(a-b)+(a-b)/(b-c)>=2
于是(a-c)/(a-b)+(a-c)/(b-c)>=4
证毕。。
原不等式等价于证(a-c)/(a-b)+(a-c)/(b-c)>=4
注意到(a-c)/(a-b)=(a-b+b-c)/(a-b)=1+(b-c)/(a-b)
(a-c)/(b-c)=(a+b-c-b)/(b-c)=(a-b)/(b-c)+1
于是(a-c)/(a-b)+(a-c)/(b-c)=2+(b-c)/(a-b)+(a-b)/(b-c)
由于a>b>c,所以b-c,a-b都为正数,可以用均值不等式:
(b-c)/(a-b)+(a-b)/(b-c)>=2
于是(a-c)/(a-b)+(a-c)/(b-c)>=4
证毕。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询