已知a>1,b>0.且a+b=2,则(1/a-1)+(1/b)的最小值 5
1个回答
展开全部
(1/a^2-1)(1/b^2-1)
=[(1-a^2)/a^2]*[(1-b^2)/b^2]
=[(1+a)(1-a)/a^2]*[(1+b)(1-b)/b^2]
=[(1+a)b/a^2]*[(1+b)a/b^2]
=[(1+a)(1+b)ab]/(a^2*b^2)
=[(1+a)(1+b)]/(ab)
=(1+a+b+ab)/(ab)
=(2+ab)/ab
=2/(ab)+1
因为a>0,b>0且a+b=1
所以可设a=(sinx)^2,b=(cosx)^2
则:原式=2/(ab)+1
=2/[(sinx)^2*(cosx)^2]+1
=2/[(sinx*cosx)^2+1
=8/(2sinx*cosx)^2+1
=8/(sin2x)^2+1
因为(sin2x)^2=1时,(即当x=kπ+π/4时)分母最大,取得最小值
【此时(sinx)^2=(cosx)^2=1/2】,即:a=b=1/2
此时原式=8/(sin2x)^2+1
=8/1+1
=9
所以(1/a^2-1)(1/b^2-1)的最小值是9
=[(1-a^2)/a^2]*[(1-b^2)/b^2]
=[(1+a)(1-a)/a^2]*[(1+b)(1-b)/b^2]
=[(1+a)b/a^2]*[(1+b)a/b^2]
=[(1+a)(1+b)ab]/(a^2*b^2)
=[(1+a)(1+b)]/(ab)
=(1+a+b+ab)/(ab)
=(2+ab)/ab
=2/(ab)+1
因为a>0,b>0且a+b=1
所以可设a=(sinx)^2,b=(cosx)^2
则:原式=2/(ab)+1
=2/[(sinx)^2*(cosx)^2]+1
=2/[(sinx*cosx)^2+1
=8/(2sinx*cosx)^2+1
=8/(sin2x)^2+1
因为(sin2x)^2=1时,(即当x=kπ+π/4时)分母最大,取得最小值
【此时(sinx)^2=(cosx)^2=1/2】,即:a=b=1/2
此时原式=8/(sin2x)^2+1
=8/1+1
=9
所以(1/a^2-1)(1/b^2-1)的最小值是9
追问
是(1/a-1)+(1/b)不是(1/a^2-1)(1/b^2-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询