求∫dx/1+ tanx不定积分?
展开全部
∫dx/(1+ tanx)
=∫ cosx/(sinx+ cosx) dx
=(1/2)∫ [(sinx+cosx) + (cosx-sinx) ]/(sinx+ cosx) dx
=(1/2)[ x + ln|sinx+ cosx| ] + C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫dx/(1+ tanx)
=∫ cosx/(sinx+ cosx) dx
=(1/2)∫ [(sinx+cosx) + (cosx-sinx) ]/(sinx+ cosx) dx
=(1/2)[ x + ln|sinx+ cosx| ] + C
=∫ cosx/(sinx+ cosx) dx
=(1/2)∫ [(sinx+cosx) + (cosx-sinx) ]/(sinx+ cosx) dx
=(1/2)[ x + ln|sinx+ cosx| ] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫dx/(tanx+1)
=∫cosxdx/(sinx+cosx)
=½∫[(cosx+sinx)+(cosx-sinx)]dx/(sinx+cosx)
=½∫[1+ (cosx-sinx)dx/(sinx+cosx)]
=½(x+ln|sinx+cosx|)+C
=∫cosxdx/(sinx+cosx)
=½∫[(cosx+sinx)+(cosx-sinx)]dx/(sinx+cosx)
=½∫[1+ (cosx-sinx)dx/(sinx+cosx)]
=½(x+ln|sinx+cosx|)+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |