这道中值定理的题怎么做?

 我来答
采拉思旧马19
2020-03-02 · TA获得超过2599个赞
知道大有可为答主
回答量:4843
采纳率:49%
帮助的人:168万
展开全部
先求f(x)=x^(m) * (1-x)^n在区间[0, 1]上的最大值:
f'(x)=mx^(m-1) * (1-x)^n+x^(m) * n(1-x)^(n-1) * (-1)
=x^(m-1) * (1-x)^(n-1) * [m(1-x)-nx]=x^(m-1) * (1-x)^(n-1) * [m-(m+n)x].
令f'(x)=0, 在(0, 1)区间求得唯一的驻点x=m/(m+n). 将函数在这点的值和在两个区间端点的值做比较,可知点x=m/(m+n)是最大值点。于是
原定积分<=f[m/(m+n)] *(1-0)=m^(m) * n^(n)/{(m+n)^(m+n)}.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式