线性代数。设向量组α,β,γ线性无关,研究向量组α+β,α-β,α-2β+γ的线性相关性.
1个回答
展开全部
(1)由于α,β,γ,η线性相关,则存在一组不全为零的常数k1,k2,k3,k4,满足
k1α+k2β+k3γ+k4η=0【1】
假设k4=0,则有k1α+k2β+k3γ=0
由于α,β,γ线性无关,则k1=k2=k3=0,这与k1,k2,k3,k4不全为零矛盾!
因此k4≠0
从而η=-(k1/k4)α-(k2/k4)β-(k3/k4)γ
即向量η一定由向量组α,β,γ线性表示
(2)
设有两组分别不全为0的数:
η=j1α+j2β+j3γ【1】
η=k1α+k2β+k3γ【2】
【1】-【2】,得到
0=(j1-k1)α+(j2-k2)β+(j3-k3)γ
由于α,β,γ线性无关,则j1-k1=j2-k2=j3-k3=0
则k1=j1, k2=j2, k3=j3
因此表示法唯一
k1α+k2β+k3γ+k4η=0【1】
假设k4=0,则有k1α+k2β+k3γ=0
由于α,β,γ线性无关,则k1=k2=k3=0,这与k1,k2,k3,k4不全为零矛盾!
因此k4≠0
从而η=-(k1/k4)α-(k2/k4)β-(k3/k4)γ
即向量η一定由向量组α,β,γ线性表示
(2)
设有两组分别不全为0的数:
η=j1α+j2β+j3γ【1】
η=k1α+k2β+k3γ【2】
【1】-【2】,得到
0=(j1-k1)α+(j2-k2)β+(j3-k3)γ
由于α,β,γ线性无关,则j1-k1=j2-k2=j3-k3=0
则k1=j1, k2=j2, k3=j3
因此表示法唯一
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询