数列an中,Sn为其前n项和且a1=1,Sn+1=4an+2设bn=an+1-2an,求证bn是等比数列。

 我来答
昝雁郑溪
2020-03-28 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:35%
帮助的人:1129万
展开全部
解答:
∵S(n+1)=4an+2
∴当n≥2时,Sn=4a(n-1)+2
∴S(n+1)-Sn=4an-4a(n-1),
即:a(n+1)=4an-4a(n-1).............(1)
∴a(n+1)-2an=2[an-2a(n-1)],
即:bn=2b(n-1).
∴{bn}是等比数列.
等比数列{bn}的公比是2.
首项b1=a2-2a1,
又S2=4a1+2,a1+a2=4a1+2,
∴a2=3a1+2=5,
∴b1=3.
∴数列{bn}的通项公式是:bn=3*2^(n-1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式