初一题目:如图,Rt△ABC中,∠C=90°,∠A平分线与∠B外角平分线相交于点D,求∠D的度数
展开全部
在BC延长线上取点E
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠ACE=180-∠ACB,CD平分∠ACE
∴∠DCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2
∵BD平分∠ABC
∴∠DBC=∠ABC/2
∵∠DCE是△DBC的外角
∴∠DCE=∠D+∠DBC=∠D+∠ABC/2
∴∠D+∠ABC/2=90-∠ACB/2
∴∠D=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
∵∠A=50
∴∠D=∠A/2=25°。请点击“采纳为答案”
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠ACE=180-∠ACB,CD平分∠ACE
∴∠DCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2
∵BD平分∠ABC
∴∠DBC=∠ABC/2
∵∠DCE是△DBC的外角
∴∠DCE=∠D+∠DBC=∠D+∠ABC/2
∴∠D+∠ABC/2=90-∠ACB/2
∴∠D=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
∵∠A=50
∴∠D=∠A/2=25°。请点击“采纳为答案”
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询