预期收益 方差 标准差是指什么?有什么区别?
展开全部
1、其区别是:
(1)方差(variance)是实际值与期望值之差的平方平均数。
(2)而标准差(standard
deviation)是方差的算术平方根。
(3)协方差用的比较少,主要是度量两个变量的相关性(在股票方面有应用)。
2、方差的定义:(variance)是在概率论和统计方差衡量 随机变量或一组数据时离散程度的度量。概率论中方差用来度量
随机变量和其 数学期望(即
均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的
平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。
3、标准差的定义:标准差(standard
deviation)
,中文环境中又常称 均方差,标准差是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。
4、协方差的定义:协方差分析是建立在 方差分析和
回归分析基础之上的一种统计分析方法。
方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。
回归分析是从数量因子的角度出发,通过建立 回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
(1)方差(variance)是实际值与期望值之差的平方平均数。
(2)而标准差(standard
deviation)是方差的算术平方根。
(3)协方差用的比较少,主要是度量两个变量的相关性(在股票方面有应用)。
2、方差的定义:(variance)是在概率论和统计方差衡量 随机变量或一组数据时离散程度的度量。概率论中方差用来度量
随机变量和其 数学期望(即
均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的
平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。
3、标准差的定义:标准差(standard
deviation)
,中文环境中又常称 均方差,标准差是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。
4、协方差的定义:协方差分析是建立在 方差分析和
回归分析基础之上的一种统计分析方法。
方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。
回归分析是从数量因子的角度出发,通过建立 回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
衡量风险的指标主要有收益率的方差、标准差和标准离差率等。
标准差和方差都是用绝对指标来衡量资产的风险大小,在预期收益率相同的情况下,标准差或方差越大,则风险越大;标准差或方差越小,则风险也越小。标准差或方差指标衡量的是风险的绝对大小,因而不适用于比较具有不同预期收益率的资产的风险。
β系数是指证券的收益率和市场组合收益率的协方差,再除以市场组合收益率的方差。即单个证券风险与整个市场风险的比值。
标准差和方差都是用绝对指标来衡量资产的风险大小,在预期收益率相同的情况下,标准差或方差越大,则风险越大;标准差或方差越小,则风险也越小。标准差或方差指标衡量的是风险的绝对大小,因而不适用于比较具有不同预期收益率的资产的风险。
β系数是指证券的收益率和市场组合收益率的协方差,再除以市场组合收益率的方差。即单个证券风险与整个市场风险的比值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询