设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-...
设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值...
设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.
展开
展开全部
解:假设A∩B≠∅,则方程组y=2x-1y=ax2-ax+a有正整数解,
消去y,得ax2-(a+2)x+a+1=0.(*)
由△≥0,得(a+2)2-4a(a+1)≥0,解得-233≤a≤233.
因a为非零整数,∴a=±1,
当a=-1时,代入(*),解得x=0或x=-1,而x∈N*.故a≠-1.
当a=1时,代入(*),解得x=1或x=2,符合题意.
故存在a=1,使得A∩B≠∅,此时A∩B={(1,1),(2,3)}.
消去y,得ax2-(a+2)x+a+1=0.(*)
由△≥0,得(a+2)2-4a(a+1)≥0,解得-233≤a≤233.
因a为非零整数,∴a=±1,
当a=-1时,代入(*),解得x=0或x=-1,而x∈N*.故a≠-1.
当a=1时,代入(*),解得x=1或x=2,符合题意.
故存在a=1,使得A∩B≠∅,此时A∩B={(1,1),(2,3)}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询