第一型曲线积分问题:∮C(2x^2 3y^2)ds,其中C是曲线x^2 y^2=2(x y)? 30
2个回答
展开全部
C可以化简为:(x-1)^2 + (y-1)^2 = 2
令 x-1 = rcost; y-1 = rsint, 则有:r = √2
∮C(2x^2+3y^2)ds = ∮[0, 2pi] [2(1+rcost)^2 + 3(1+rsint))^2] r dt
= ∮[0, 2pi] [2(1+2rcost+r^2cos^2t) + 3(1+2rsint+r^2sin^2t)] r dt
= ∮[0, 2pi] (5r + 4r + r) dt (这里用到了sint, cost 在周期内积分为零简化)
= 20√2 pi
令 x-1 = rcost; y-1 = rsint, 则有:r = √2
∮C(2x^2+3y^2)ds = ∮[0, 2pi] [2(1+rcost)^2 + 3(1+rsint))^2] r dt
= ∮[0, 2pi] [2(1+2rcost+r^2cos^2t) + 3(1+2rsint+r^2sin^2t)] r dt
= ∮[0, 2pi] (5r + 4r + r) dt (这里用到了sint, cost 在周期内积分为零简化)
= 20√2 pi
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询