求解两题高数题。
展开全部
解:1。用洛必达法则:
原式=lim(x→0)[4(x-sinx)]/[4(e^x-1)^3*e^x]
=lim(x→0)[x-(x-x^3/3!)]/[(1+x-1)^3(1+x)]
=lim(x→0)x^3/[3!*x^3(1+x)
=1/6.
2. ∫[sin(2x)/√(4-cos^4x)]dx
=∫sin(2x)/√[(2+cos^2x)(2-cos^2x)]dx
=∫sin(2x)/√[(5/2-1/2+cos^2x)(3/2+1/2-cos^2x)]dx
=2∫sin(2x)/√[(5-cos2x)(3-cos2x)]dx
=2∫sin(2x)dx/√[15-8cos(2x)+cos^2(2x)]
=∫d[4-cos(2x)]/√{[4-cos(2x)]^2-1}
=ln{4-cos(2x)+√{[4-cos(2x)]^2-1}}+C
原式=lim(x→0)[4(x-sinx)]/[4(e^x-1)^3*e^x]
=lim(x→0)[x-(x-x^3/3!)]/[(1+x-1)^3(1+x)]
=lim(x→0)x^3/[3!*x^3(1+x)
=1/6.
2. ∫[sin(2x)/√(4-cos^4x)]dx
=∫sin(2x)/√[(2+cos^2x)(2-cos^2x)]dx
=∫sin(2x)/√[(5/2-1/2+cos^2x)(3/2+1/2-cos^2x)]dx
=2∫sin(2x)/√[(5-cos2x)(3-cos2x)]dx
=2∫sin(2x)dx/√[15-8cos(2x)+cos^2(2x)]
=∫d[4-cos(2x)]/√{[4-cos(2x)]^2-1}
=ln{4-cos(2x)+√{[4-cos(2x)]^2-1}}+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询