1+1/x的x次方的极限是什么?

 我来答
金墙刺纱腰i
2022-02-02 · TA获得超过5887个赞
知道小有建树答主
回答量:2016
采纳率:100%
帮助的人:37.1万
展开全部

1+1/x的x次方的极限是1。

具体回答如下:(1+1/x)=e^(xln(1+1/x),只需求limxln(1+1/x)=limln(1+1/x)/(1/x),用洛必达法则,等于上下分别求导再求极限,结果为0,所以原式极限为1。

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式