矩阵的秩与伴随矩阵的秩的关系是什么?
1个回答
展开全部
1、如果r(A)=n,则r(A*)=n。
2、如果r(A)=n-1,则r(A*) =1。
3、如果r(A)< n-1,则r(A* )= 0。
如果A是行满秩的矩阵,因为矩阵的列秩等于矩阵的行秩,所以矩阵的列秩等于矩阵的行数,所以矩阵的列向量的线性组合一定能得到所有该维数的列向量。
比如A是2x4的矩阵,A的秩为2,那么组成A的四个列向量的秩为2,这四个列向量都是2维的,那这四个列向量是不是能线性组合成任意的二维列向量,所以一定有解。
小技巧:
A的形式要么是矮且胖要么是方阵(矩阵的列不可能小于矩阵的行数),如果矩阵A矮且胖的话,那么对线性方程组的约束的个数(矩阵的行数)小于未知数的个数,那就是无穷多解。
矩阵A是方阵,根据克拉默法则我们也能得出是唯一解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询