已知a,b,c是正数,且abc=1,求证:a/b+b/c+c/a>=ab+bc+ca

 我来答
faker1718
2022-07-02 · TA获得超过964个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:50.1万
展开全部
左边-右边=a(1/b-b)+b(1/c-c)+c(1/a-a)>=3 sq3rt [(1/b-b)(1/c-c)(1/a-a)]=3 sq3rt[(1-a)(1-b)(1-c)] sq3rt[(1+a)(1+b)(1+c)] 其中sq3rt[x]表示对x开三次方,且用到了abc=1,下同又左边-右边=a^2 c+b^2 a+c^2 b-(ab+bc...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式