已知任意三角形的内角和是180°,请你推导n边形的内角和
1个回答
展开全部
从任意一顶点向不相邻的顶点连线,n边形可以得到(n-2)个三角形,所有三角形的内角和加起来就是这个多边形的内角和,易得三角形的内角和是180,所以n边形内角和公式(n-2)×180°.
方法二:内部任选一点,向所有顶点连线,得到n个三角形,多边形内角和=n个三角形内角和-360(就是所选那点为顶点的所有角之和)=(n-2)×180
方法二:内部任选一点,向所有顶点连线,得到n个三角形,多边形内角和=n个三角形内角和-360(就是所选那点为顶点的所有角之和)=(n-2)×180
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询